Indoor 3D Video Monitoring Using Multiple Kinect Depth-Cameras

نویسندگان

  • Mario Martínez-Zarzuela
  • Miguel Pedraza-Hueso
  • Francisco Javier Díaz Pernas
  • David González Ortega
  • Miriam Antón-Rodríguez
چکیده

This article describes the design and development of a system for remote indoor 3D monitoring using an undetermined number of Microsoft® Kinect sensors. In the proposed client-server system, the Kinect cameras can be connected to different computers, addressing this way the hardware limitation of one sensor per USB controller. The reason behind this limitation is the high bandwidth needed by the sensor, which becomes also an issue for the distributed system TCP/IP communications. Since traffic volume is too high, 3D data has to be compressed before it can be sent over the network. The solution consists in selfcoding the Kinect data into RGB images and then using a standard multimedia codec to compress color maps. Information from different sources is collected into a central client computer, where point clouds are transformed to reconstruct the scene in 3D. An algorithm is proposed to merge the skeletons detected locally by each Kinect conveniently, so that monitoring of people is robust to self and inter-user occlusions. Final skeletons are labeled and trajectories of every joint can be saved for event reconstruction or further analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibrate Multiple Consumer RGB-D Cameras for Low-Cost and Efficient 3D Indoor Mapping

Traditional indoor laser scanning trolley/backpacks with multi-laser scanner, panorama cameras, and an inertial measurement unit (IMU) installed are a popular solution to the 3D indoor mapping problem. However, the cost of those mapping suits is quite expensive, and can hardly be replicated by consumer electronic components. The consumer RGB-Depth (RGB-D) camera (e.g., Kinect V2) is a low-cost ...

متن کامل

Distributed System for 3d Remote Monitoring Using Kinect Depth Cameras

This article describes the design and development ofa system for remote indoor 3D monitoring using an undetermined number of Microsoft® Kinect sensors. In the proposed client-server system, the Kinect cameras can be connected to different computers, addressing this way the hardware limitation of one sensor per USB controller. The reason behind this limitation is the high bandwidth needed by the...

متن کامل

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments

RGB-D cameras (such as the Microsoft Kinect) are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system tha...

متن کامل

Implementation of 3D Object Reconstruction Using Multiple Kinect Cameras

Three-dimensional (3D) object reconstruction is to represent objects in the virtual space. It allows viewers to observe the objects at arbitrary viewpoints and feel a realistic sense. Currently, RGBD camera from Microsoft was released at a reasonable price and it has been exploited for the purpose in various fields such as education, culture, and art. In this paper, we propose a 3D object recon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1403.2895  شماره 

صفحات  -

تاریخ انتشار 2014